Skip to main content

Portfolio

Achilles
Achilles Therapeutics
Achilles

Achilles Therapeutics

Achilles Therapeutics is designing therapies to target truncal tumour neo-antigens

Achilles Therapeutics is designing therapies to target truncal tumour neo-antigens – unique flags to the immune system present on the surface of every cancer cell, which were first discovered by Cancer Research UK and the NIHR University College London Hospitals (UCLH) Biomedical Research Centre (BRC) funded scientists at the Francis Crick Institute and UCL Cancer Institute. Truncal tumour neo-antigens are present on all cancer cells in an individual patient’s tumour but not on healthy cells, so could allow scientists to target and destroy tumours without harming healthy tissues. Syncona and Cancer Research Technologies, with the support of UCLB and the Crick, formed Achilles Therapeutics with a round of £13.2 million ($17.5 million) led by Syncona with the CRT Pioneer Fund and UCLTF.

http://www.achillestx.com

Hazy
Hazy
Hazy

Hazy

Hazy uses advanced AI to automate anonymization of data, allowing developers and data scientists to share data securely.

Hazy uses advanced AI to automate anonymization of data. This allows developers and data scientists to share data securely. The protection of personal data is a huge concern for all companies, Hazy helps companies easily use data in a secure way.

https://hazy.com/

MATR
Matr
MATR

Matr

Matr tutors help children gain confidence and improve their skills in maths.

Matr, launched in 2012, provides one-to-one tutoring services via a proprietary online platform and aims to connect lower cost, higher quality tutoring supply from developing countries to developed economies. Over 7,000 pupils benefit each week from maths sessions delivered by their tutors based in India and Sri Lanka.

https://matr.org

MediaGamma
MediaGamma
MediaGamma

MediaGamma

MediaGamma is developing an enterprise grade reinforcement machine learning platform

MediaGamma, a specialist in AI and Machine Learning solutions, is developing an enterprise grade reinforcement machine learning platform, delivering machine decisions in under 5 milliseconds for a new class of business problems. A spin-out from UCL’s Computer Science department founded on research by Dr. Jun Wang, MediaGamma already has partnered with a 1st tier telecoms provider to deliver high value data products and are processing over 700GB of data per day. By enhancing data and decision making they are building a strong pipeline across telecoms, adtech and finance.

https://www.mediagamma.com/

MeiraGTx
MeiraGTx
MeiraGTx

MeiraGTx

MeiraGTx is a clinical-stage gene therapy company focused on developing potentially curative treatments for patients living with serious diseases

MeiraGTx is a vertically integrated, clinical stage gene therapy company with four ongoing clinical programs and a broad pipeline of preclinical and research programs. MeiraGTx has core capabilities in viral vector design and optimisation and gene therapy manufacturing, as well as a potentially transformative gene regulation technology. Led by an experienced management team, MeiraGTx has taken a portfolio approach by licensing, acquiring and developing technologies that give depth across both product candidates and indications.

https://meiragtx.com/

Orchard
Orchard Therapeutics
Orchard

Orchard Therapeutics

Orchard Therapeutics is a biotechnology company dedicated to bringing transformative gene therapies to patients with serious and life-threatening orphan diseases

Orchard Therapeutics is a spin-out from the Institute of Child Health (ICH) at UCL, commercialising a gene therapy platform with the potential to cure a range of rare childhood genetic disorders in a single treatment. The company’s programmes use the potential of ex-vivo autologous haematopoietic stem cell gene therapies to restore normal gene function in severe and life-threatening inherited disorders, including immunodeficiencies and a range of neurological disorders, and have demonstrated excellent safety and efficacy in ongoing clinical trials. Orchard’s shareholders include F-Prime Ventures, UCLB and the UCL Technology Fund.

https://www.orchard-tx.com/

Blood-brain barrier
Blood-brain barrier delivery technology
Blood-brain barrier

Blood-brain barrier delivery technology

This PoC project aims to experimentally and commercially validate a novel, annexin-based method for carrying therapeutic molecules into the brain.

Over 98% of known drug molecules are unable to enter the brain, rendering a broad range of CNS diseases untreatable by traditional pharmacological mechanisms. Neurodegenerative diseases, brain cancer and mechanical- or hypoxia-induced brain trauma remain areas of enormous unmet clinical need; and a mechanism which could successfully carry drugs – which would otherwise be unable to cross the BBB – into the brain at relevant concentrations could provide enormous patient benefit, and have material commercial prospects. This PoC project aims to experimentally and commercially validate a novel, annexin-based method for carrying therapeutic molecules into the brain.

Infectious Disease Biomarkers
Infectious Disease Biomarkers
Infectious Disease Biomarkers

Infectious Disease Biomarkers

A project to develop a simple test to rule out active tuberculosis

On presentation with symptoms of tuberculosis (TB), patients are immediately put onto strong antibiotics and it currently takes up to 6 weeks to determine whether or not this infection is present – and in the vast majority of cases it isn’t. A simple test to rule out active TB could have the potential to significantly change clinical practice both in the developed and developing world. This PoC project is supporting the development of a panel of RNA (and potentially protein) biomarkers which could not only rule out TB on presentation, but could be used to monitor disease progression once a patient is being treated.

Intrinsic
Intrinsic
Intrinsic

Intrinsic

Intrinsic is developing a new type of all silicon non-volatile memory

The Resistive Random Access Memory (RRAM) technology has shown 400x lower switching energy and 6 times lower voltage than FLASH memory, whilst being highly compatible with current semiconductor manufacturing processes. This ground breaking technology is being developed in Anthony Kenyon’s group within Electronic and Electrical Engineering. The UCL Technology fund have invested to introduce a commercial mentor as the business prepares to spin-out and to fund a number of technological developments.

https://www.intrinsicst.com/

DNA Sequence
Lentiviral gene therapy for p47-CGD
DNA Sequence

Lentiviral gene therapy for p47-CGD

Developing a novel gene therapy for the p47phox-deficient variant of chronic granulomatous disease (CGD)

Prof Adrian Thrasher and his team at the UCL Great Ormond Street Institute for Child Health have developed a novel gene therapy for the p47phox-deficient variant of chronic granulomatous disease (CGD). A significant unmet need exists for patients who inherit this disease, as there is no existing curative gene therapy, stem-cell transplantation is not indicated for most patients and, in the absence of a cure, expensive lifetime prophylaxis against infection is required – and even then, recurrent infections and extended hospitalisations are common. With direct funding from the UCL Technology Fund, Prof Thrasher and colleagues will be completing the final preclinical and manufacturing steps required to take this gene therapy into the clinic; as well as supporting a first-in-man clinical trial which itself has the potential to transform the lives of patients.

Astroscreen
Astroscreen
Astroscreen

Astroscreen

Social Media has become weaponised

Astroscreen is using the latest machine learning techniques and disinformation analysts to protect brands and defend democracy from harmful social media manipulation campaigns also known as astroturfing or disinformation campaigns. Astroscreen is able to detect social media manipulation campaigns and alert governments and companies when elections or brands are under disinformation attacks.  

http://Astroscreen.com

Bloomsbury
BloomsburyAI
Bloomsbury

BloomsburyAI

Enabling everyone to easily create their own question-answering system

BloomsburyAI is automating expertise by building systems able to capture knowledge from unstructured and structured data and allow interrogative access in natural language. Built on the research of founder Guillaume Bouchard and UCL’s Sebastian Riedel the company has a world leading machine reading capability. The Bloomsbury AI team joined facebook in 2018.

http://Bloomsbury.ai

Bramble Energy
Bramble Energy
Bramble Energy

Bramble Energy

The only fuel cell company with Gigafactories

Bramble Energy is developing technology to inexpensively manufacture fuel cells by printing them onto circuit boards. Bramble Energy has developed the unique, patent protected, printed circuit board (PCB) fuel cell – the PCBFC™ which uses cost-effective production methods and materials from the PCB industry to reduce the cost and complexity of manufacturing hydrogen fuel cells.

http://brambleenergy.com

Content Scout
Context Scout
Content Scout

Context Scout

Building knowledge graphs from online content

Context Scout has developed a technology that builds knowledge graphs from online content. Using state-of-the-art technologies, thew team have created a browser-based tool assisting users with their internet searches by providing additional relevant information from a variety of online sources. With an aim to soon ‘help you with any task online’, the tool currently provides valuable insights on companies, individuals and products.

http://contextscout.com

Echopoint Medical
Echopoint Medical
Echopoint Medical

Echopoint Medical

Transforming interventional cardiology

Echopoint Medical is developing a family of optical-fibre based sensors that integrate into medical innovative devices, bringing unparalleled sensing modalities to minimally-invasive procedures. The team is developing its first devices and plan to run a ‘First In Man’ trial in 2020.

http://echopointmedical.com

KIT-AR
KIT-AR
KIT-AR

KIT-AR

Augmented Reality for Intelligent manufacturing

KIT-AR is a fully integrated industrial Augmented Reality system that increases manufacturing productivity. KIT-AR instantly provides all the information needed to assemble and engineer products efficiently, reducing unplanned downtime caused by human error. It also applies AI to monitor work and intervene when necessary.

http://kit-ar.com

Odin Vision
Odin Vision
Odin Vision

Odin Vision

Enhancing colonoscopy accuracy and outcomes within clinics

Odin Vision are using cutting edge machine vision to help clinicians detect and diagnose polyps during colonoscopy procedures. Odin Vision, led by Peter Mountney, is developing a colorectal cancer detection and classification software tool that has the potential to enhance colonoscopy accuracy and outcomes within clinics.

https://odin-vision.com/

Phasecraft
Phasecraft
Phasecraft

Phasecraft

Using disruptive theory to unlock the power of quantum computing

Leading academics at UCL and University of Bristol with expertise in the fields of computer science, experimental and theoretical physics, and maths have joined forces to create PhaseCraft. Quantum computing is on the cusp of becoming a reality and the teams are developing algorithms and software for a new class of quantum computers. They are working in partnership with Google to build a demonstrator that utilises the power of quantum computing to solve real world problems.

http://phasecraft.io

ATTR
ATTR
ATTR

ATTR

Developing small molecule stabilisers to stabilise transthyretin in systemic transthyretin amyloidosis (ATTR)

Prof Sir Mark Pepys and his team at the Wolfson Drug Discovery Unit, UCL Centre for Amyloidosis and Acute Phase Proteins have identified a novel pathway leading to the progression of transthyretin amyloidosis, enabling the development of new therapeutics. This project is funding further analysis of the pathway for formation of amyloid deposits in this disease and identification of modulators of this pathway which will lead to the development of novel and patentable chemical entities to take forward into the clinic.

'CGQ Targeting' change to 'GQ Targeting'
GQ Targeting
'CGQ Targeting' change to 'GQ Targeting'

GQ Targeting

The team is developing a series of small-molecule compounds which bind to novel genetic targets associated with genomic dysfunctions which underlie cancer

Prof Stephen Neidle of the UCL School of Pharmacy and his team have developed a series of small-molecule compounds which bind to novel genetic targets associated with genomic dysfunctions which underlie cancer. This has the potential to open a new area of cancer therapeutics against well-established, but previously undruggable cancer targets. The UCL Technology Fund is directly supporting Prof Neidle’s lab with funding of up to £1m to deliver to a pre-clinical stage a first-in-class, optimised drug that will have superior efficacy against human pancreatic cancer, one of the most significant areas of unmet need in medicine. Standard current drug treatment (chemotherapy) has limited effects at best on improving patient survival in this devastating disease; the overall goal of this commercialisation program is to make a significant difference to survival for pancreatic cancer patients. The drug under investigation also has applicability to many other cancer types.

Cyclophilin D inhibitors
Cyclophilin D inhibitors
Cyclophilin D inhibitors

Cyclophilin D inhibitors

Small drug molecule targeting Cyclophilin D for multiple sclerosis 

Although multiple sclerosis (MS) is largely an autoimmune disorder in which the immune system erroneously attacks the sheaths surrounding neuronal axons, it is the death of these cells (neurodegeneration) itself that causes the long-term motor and cognitive deficits that are so devastating in this widespread disease. An optimised therapeutic approach should therefore target both immunomodulation and neurodegeneration in order to prevent chronic disability. This PoC project is aiming to complete lead optimisation from a series of novel small-molecule inhibitors of Cyclophilin D and to initiate pre-clinical evaluation.

Freeline Therapeutics   
Freeline Therapeutics   
Freeline Therapeutics   

Freeline Therapeutics   

Freeline Therapeutics is a bio-pharmaceutical company focused on the development of liver-directed gene therapies

Gene therapy has the potential to transform lives for people with severe diseases by providing a long-lasting, safe and reliable source of enzymes to the blood. The Company’s next-generation AAV gene therapy platform has been developed by Professor Amit Nathwani, Professor of Haematology at UCLB, and it builds on the successful haemophilia B phase I/II trial conducted by him with St. Jude Children’s Research Hospital, Memphis. The results of the study, published in the New England Journal of Medicine, demonstrated that all ten treated haemophilia B patients showed safe and sustained expression of blood clotting Factor IX after a single administration. The company will develop and commercialise gene therapies for bleeding and other debilitating disorders. Freeline’s shareholders include Syncona LLP, UCLB and UCL Technology Fund.

http://www.freeline.life

GliAlign Limited
Glialign Limited        
GliAlign Limited

Glialign Limited        

Cell therapy for peripheral nerve repair

Hundreds of thousands of people in the developed world are affected by severe peripheral nerve damage, resulting in paralysis and loss of sensation, and often accompanied by chronic pain. Current therapies are successful in fewer than half of cases. A cell therapy is under development at UCL for repair of severe peripheral nerve damage, mimicking nerve structure and better enabling functional recovery. Glialign was set-up in 2018 to take this technology forward and was funded by UCLTF, UK Innovation and Science: Seed Fund (UKI2S) and Innovate UK.

http://www.glialign.com

IGEM Therapeutics    
IGEM Therapeutics       
IGEM Therapeutics    

IGEM Therapeutics       

Developing novel IgE antibody drugs to fight cancer

All current approved antibody treatments for cancer are of the IgG class, but despite their efficacy, there are limitations to their clinical activity, particularly in targeting solid tumours. IGEM is an innovative immuno-oncology company targeting cancer with the IgE class of antibodies, which have evolved to kill tissue-dwelling multicellular parasites and exhibit several key features that make it ideal for treating solid tumours. The company was spun-out from King's College London and is based on the pioneering work of Dr Sophia Karagiannis and her collaborators at UCL. IGEM’s lead programme is the world’s first IgE therapeutic to enter the clinic and is currently in a Phase 1/2a trial for ovarian cancer. Alongside Epidarex Capital and Alsa Holdings, UCLTF invested in a £5m Series A round to help IGEM develop its pipeline of IgE antibody candidates against a variety of cancers.

http://www.igemtherapeutics.com

Targeting LRG-1 in oncology
Targeting LRG-1 in oncology
Targeting LRG-1 in oncology

Targeting LRG-1 in oncology

Normalisation of pathological neovascularisation in oncology

Profs Moss and Greenwood's technology has also demonstrated utility in normalising and improving the vascularisation of solid tumours, thus enabling better penetration - and thus improved efficacy - for small molecules (e.g. chemotherapy), biologics (e.g. checkpoint inhibitors) and cell therapies (e.g. CAR-T approaches). In partnership with UCLB, the team have built up a robust IP package and developed a proprietary fully-humanised monoclonal antibody. A UCLTF Licensing Project is underway to validate the performance of this technology versus standard of care in a range of relevant in vitro and in vivo models, as well as developing biomarkers and key assays for clinical application. Upon successful completion of this project, UCLTF will look to partner with other investors and pharmaceutical companies to rapidly progress the technology to clinic.

Targeting LRG-1 in ophthalmology
Targeting LRG-1 in ophthalmology
Targeting LRG-1 in ophthalmology

Targeting LRG-1 in ophthalmology

Normalisation of pathological neovascularisation in opthalmic disease

Pathological neovascularisation has been implicated in a range of ophthalmic diseases such as ‘wet’ age-related macular degeneration, diabetic retinopathy, diabetic macular oedema and a number of rare diseases of the retina. Profs John Greenwood and Steve Moss of the UCL Institute of Ophthalmology have developed a therapeutic approach aimed at normalising disordered blood vessels in these diseases, using antibody-based products against a protein target which promotes vascular destabilisation and uninhibited blood-vessel formation in pathology. A UCLTF-funded Proof of Concept project validated the commercial and regulatory pathways to clinical application, and the Fund is supporting a new spinout to take the ophthalmology program forward into crucial toxicology studies ahead of a first-in-man clinical trial.

MSCTRAIL for mesothelioma
MSCTRAIL for mesothelioma
MSCTRAIL for mesothelioma

MSCTRAIL for mesothelioma

Clinical stage stem cell therapy for mesothelioma

Prof Sam Janes and his collaborators at UCL are currently investigating the use of MSCTRAIL cell therapy for non-small cell lung cancer (NSCLC) in human clinical trials. This innovative allogeneic therapy consists of mesenchymal stem cells (MSCs) that have been engineered to produce tumour necrosis factor-related apoptosis-inducing ligand (TRAIL); a molecule shown to preferentially induce cell death in cancer cells without affecting healthy cells. A UCLTF Licensing Project is now funding the use of MSCTRAIL in an additional biomarker-driven human clinical trial for malignant pleural mesothelioma (MPM). MPM is mainly caused by exposure to asbestos and affects the pleura; a membrane that forms the outer lining of the lungs and the inner lining of the chest cavity. It is currently incurable and causes more than 2,300 deaths a year in the UK alone.

Nrf2 in Parkinson's disease
Nrf2 in Parkinson's disease
Nrf2 in Parkinson's disease

Nrf2 in Parkinson's disease

Small drug molecule targeting Nrf2 in neurodegenerative diseases 

Oxidative stress has been implicated as a key mechanism underlying neuronal death in Parkinson’s disease. Specific proteins within neurons and neighbouring cells act normally to up-regulate the activity of anti-oxidant genes, which can reduce the impact of oxidative stress, but these proteins can be prevented from translocating into the nuclei of neurons (where their genetic material is stored) by another group of ‘sequestering’ proteins in the cytoplasm. This program is supporting key de-risking steps for the development of small-molecules to disrupt the association between the translocating proteins and their sequestering partners, in order to promote anti-oxidant gene expression. This approach therefore aims to provide long-term protection from neurodegeneration in Parkinson’s. Success on optimisation and in vivo testing will support the case for further funding by UTF to take this program forwards to the clinic.

Turbinate Technologies
Turbinate Technologies
Turbinate Technologies

Turbinate Technologies

Developing a novel particulate filtering device for air pollution

Air pollution is a global health concern and is estimated to cause up to 6.5 million premature deaths a year around the world. It consists of harmful gases and fine particulates, which are not adequately filtered out by the wide variety of fibrous masks that are currently in use by urban inhabitants. Prof Hugh Montgomery from the UCL Institute for Human Health and Performance is currently developing a novel technology that could result in a superior particulate filtering device. A UCLTF PoC is supporting the optimisation of this technology through iterative parametric in silico modelling and physical testing. Functional verification of this device will support the case for further UTF funding and enable the development of a facemask product with proven efficacy.

Cell therapy
Quell Therapeutics
Cell therapy

Quell Therapeutics

Quell aims to develop engineered T regulatory (Treg) cell therapies

Quell aims to develop engineered T regulatory (Treg) cell therapies. Tregs are a subset of T cells that provide a regulatory function and have the ability to prevent unwanted over-activation of the immune system through their strong immune-suppressive capacity. Quell will seek to utilise the power of Treg cells to advance therapies for the management and treatment of a range of solid organ transplant and autoimmune conditions.